\wp

Stanford Artificial Intelligence Laboratory November 1973

FINAL REPORT

RESEARCH IN MATHEMATICAL THEORY OF COMPUTA-TIO_N .

John McCarthy, Professor of Computer Science
Principal Investigator

supported by
National Aeronautics and Space Administration
under
Contract NSR 05-020-500 -

»

"{NASA-CR-137983) HESEAFCH IN MATHENATICAL
'THEQRY OF COMBUTATION Final EReport
{stanford Univ.) 14 p HC .$4.00 CSCL 12a

G3/19

H76-2118"

Unclas
16062

COMPUTER SCIENCE DEPARTMENT‘
School of Humanities and Sciences
STANFORD UNIVERSITY

1. Introduction

This report summarizes yesearch performed under NASA Contract NSR-05-020-500 in the period
1970 December 18 1o 1973 April 1. The primary products of this work have already been published
(Appenclices A and B). Accomplishments under this contract can best be understood in terms of
antecedent work. : ' :

2. Early Work

The idea that computer scientists should study computations themseives rather then just the
nation of computability (1e. recursion theory) was suggested in 1963 by McCarthy [1,2] These
early papers suggesled Lhat mathematical methods could be used to prove (or disprove) the
following praperties of programs: o
L a program is correct,

2. a program terminates,

% two programs are equivalent, : ‘ :

4. a translation procedure between two languages is correct, (ie. it preserves the meaning of

a program), : : :

. optimized programs are equivalent to the original,

. one program uses less resources than another and is therefore more efficient.

[o RS

These are simply technical descriptions of a programer’s day to day problems. The notion of
cotrectness of a program is just - how do we know that a patticular program solves the problem
Cthat it was intencled to. The usual way of putting it is: "Does my program have bugs in it". A
correct inathematical deseription of what this means is a central problem in MTC and is a
genuine [irst step in any attempt to.mechanize the debugging of programs. The equivalgnce of
programs is similar in that until there are clear ways of describing what a program does, saying
that they “do” the same thing is impossible. These technical problems are now well enough
understond <o that serious attempts to apply the results to ‘real” programs are beginning.
Attem|is (o formalize these questions have proceeded along several lines simultaneously. In {4,6]
MecCarthy and Mansfield discussed new languages for expressing these notions were considered.
(4] considered a first order logic which contained an "undefined” truth-value. This was one way
of explaining what was meant by computations which didn't terminate. [5] used a traditional first
orcier logic Lo describe a subset of ALGOL.

I [3] McCarthy proposed that computers themselves might be used to check the correctness of
proafs in farmal systems, and was the first to actualily construct a program to carry this-out. This
suggests that nne could check or possibly look for solutions to the above problems (in the form of
‘proofs in some formal system). As a result a series of proof checkers has been built. The first is
reported in [7]. s :

In 1956 Fioyd [3) published his now well known method of assigning assertions to the paths in a
flowchart, in order to find verification conditions the truth of which guarantee the "correctness” of
the original program. - : '

Final Report , _ - o ~* Early Work

McCarthy, Painter and Kaplan {90,1112.13,14] used the ideas in [4,8] to prove:
I} the correctness of a compiler for arithmetic expre‘ssioris
2) 1he correctness of several compilers for algol like programs,
3) the eqmvalencp of some algorithms.

I aplan also gave some completeness results for a formal system which talks -about assignment
statemernls [10], and discussed the equivalence of programs [I3,14]. During this time. another proof
checker was written by W. Werher [i5]

In a series of articles Z. Manna extended and expanded Floyd’s original ideas. With A. Pneulii
[1G.17] he discussed Lhe relationship between the termination, correcthess and equiva]enée of
recursively defined functions -and the sausfiability {ot unsatisfiabﬂity) of certain first order
formnlas. In [17] they work out an example using the 91 function. In [18] Manna extended his
ideas to non-dererministic programs. E. Ashcroft and he did a similar thing for parallel' programs
in [21] ‘ T o o D

P. Hayes [18] again attacked the problem of a three.valued predicate logic, this time with a
machme implementation in mind. This coincided with a paper of Manna and McCarthy [19],
which used this logic. :

About this time (1959} several important developments occutred which a!lowed the above
quest[rmc to be reexamined from different points of view, : :
S In [22] Z. Manna showed how to formulate the notion of partial
CUrm thess in-second logic.
. AR Hoare [24] published a paper describing a new formalism
i0| expressing the meanings of programs in terms of input/output relations,
$. lgarashi [23] gave an axiomatic description of an ALGOL-like

I;-'+ ngu age,

+. 1. Scotr suggested using the typed lambda calculus for studying

MTC and first described IN 1970 a mathematical model of Church's Jambda

caiculus.

These mgether with McCarthy's axiomatic approach now represent the most important directions
in MTC vescarch. They express different points of view towards the meanings (or semantics) of
Programs. o : &

3. Research Performed under this Contract

By the beginning of the contract period (December 1970), Mathematical Theory of Computation .

had become quite a lively field. Research performed under this contract cannot be cleanly
separatect from ather concurrent work at Stanford (mainly by Edward Ashcroft, Ashok Chandra,
Robert Floyd, Shigeru Igarashi, and Ralph London), or from werk elsewhere. Instead, we simply
summarize recent progress, with a note that the following persons received at-least part of their
support from the subject contract: Jack Buchanan, John McCarthy, Zohar Manna, Robin Miiner,
and Richard Weyhrauch, ' : ‘

Manna (following Floyd) describes the effects of & program by showing what kinds of relations
must hold amang the values of the program variables at different points in the execution of the
program. In patticular between the input and the output. In [31} Floyd suggests an inteyactive
systom for designing correct programs. These ideas are systematized and expanded by Manna in
[24]. He and Ashcroft show how to remove GOTO statements from programs and replace them
by WHILE statements in [23]. ‘ o S :

Hoare shows how properties (including the meaning) of a program can be expressed -as rules of
infererce n his formal system and how these rules can be used to generate the relations described -
by Floyd and Manna. This puts their approach in a formal setting suitable for treatment on a '
computer. Waork on this formal system is at present being aggressively pursued. Igarashi, London,
aned 1nckham hiave increased the scope of the original rules and have programed a system calledt
VGG (for verification condition generator) which takes. PASCAL programs together with
assertions assigned to loops in the program and uses the Hoare rules to automatically generate
verification conditions the proof of which guarantee the correcness of the original.program.
These sentences are ‘then given to a resolution theorem prover[26] which tries to prove them.
There it also a project started by Suzuki under the direction of Luckham te develop.programs to
take account of particular properties of arithmetic and arrays when trying to prove the
wverification conditions. London also produced an informal proof of two lisp “compiler[35]
Igarashi’s formal system [23] difters from Hoate's in that the rules of inference act directly on the -
programs themselves rather than properties of such programs. - o ' T

Scott's work assumes that the most suitable meaning for a program is the function which it
compuics aned essentially ignores how that computation proceeds. The other approaches are more .
intentional in that ‘ : o
1) they may not nhecessarily mention that function explicitly although it might appear
implicitly. .
9) they can {and do) consider notions of meaning that are stronger than Scott's.

For example programs might have to have “similar” computation sequences before considering .
them equivalent[2h). ’)

A computer program (LCF for “logic for computable functions”) has been implemented by
‘Milner[26] This logic uses the typed lambda calculus to defines the semantics of programs.
Exactly how lo do this was worked out by Weyhrauch and Milner[28,29.30] In conjunction
Newey worked on the axiomatization of arithmetic, finite sets, and lists in the LCF environment.

Final Report | : Research Performed under this Contract

This work is still continuing. In addition Milner and” Weyhrauch worked with Scott on an
axiomatization of the type free lambda calculus. Much of this work was informally summarized
in [22] ' ' :

McCarthy attempts to give an axiomatic treatment to a programming language by describing its
abetract syntax in first order logic and staling properties of the programming language directly as
axions. This approach has prompted Weyhrauch to begin the design of a hew first order logic
proof checker based gn natural deduction. This proof checker is expected to incorporate the more
interesting features of LCF and will draw heavily on the knowledge gained from using LCF to
atteinpt to make the new first order proof checker a viable tool for use in proving propernes of
[HOF IR,

This work is all being blought together by plOJECtS that are still to a la:ge extent unfinished.
They include '
1) a new version of LCF including a facility to search for
pmotq automatically.
2) the description of the language PASCAL in terms of both
LCF and in first order logic (in the style of McCarthy)
in arcer to have a realistic comparison between these
approaches and that of Floyd, Hoare, et al,
2) a continuation of Neweys work.
4) the discussion of LISP semantics in LCF and an attempt
o prave the correctness of the London compilers in a
formal way. This is also being done by Newey.
5) the design of both special purpose and domain independent
proving procedures specifically with program correctness
in mind.
6) the design of language: for describing such proof ptocrdutes
- 1) the embedding of these ideas in the new first order checker.’

In addition (o the work describied above, Ashcroft, Manna, and Pneuli[SG],' and :Ch'a’pdra and
Manna [37] have published results related to program schemas, :

Some of these references appeared both as AL memos and were later published in JOUI‘I‘IEIS In
such cases bath references appear in the bibliography.

REFERENCES

{11 McCarthy, Johrf. "A Basis for a Mathematical- Theory of Computation,” in Biaffort, P.; and
Herschberg, D, (eds), COMPUTER PROGCRAMMING AND FORMAL
SYSTEMS. Amsterdam: North-Holland, 1963.

[2] McCarthy. John, "Towards a Mathematical Theory of Computation," in PROC. IFIP
CONGRESS 62, Amsterdam: North-Hoiland, 1963

[3] McCarthy, John, “Checking Mathematical Proofs by Computer,” in Proe. Symp. on Recursive
Function Theory{196t}. American Mathematical Society, 1962.

[4] McCarthy, John, PREDICATE CALGULUS WITH UNDEFINED" AS A TRUTH-
: VALUE. AIM-I, March, 1963.

(5] McCarthy, John, A FORMAL DESCRIPTION OF A SUBSET OF ALGOL AIM 24,
September, 1964

e . in Steele, T., {ed), FORMAL LANGUACE DESCRIPTION LANGUAGES
Amsterdan: North Holland, 1966.

[6] Mansfield, R, A FORMAL SYSTEM OF COMPUTATION. AIM-25, September j964.

(7] McCarthy, John, A PROOF- CHECKER FOR PREDICATE CALCULUS. AIM- 27, March,

1965,

. 8] Floyd, R. W. .-"Assighing Meanings to programs,” in Proc. Symp. .in vol. 19, American
Mathematical Socicty, 19-32 1967, -

fl] McCarthy, John, and Painter,], CORRECTNESS OF A COMPILER FOR ARITHMETIC‘
" ENPRESSIONS. AIM-40, April, 1966.

.............. . in MATHEMATICAL ASPECTS OF COMPUTER SCIENCE. New York:
Americatn Mathematical Society Proc. Symposia in Applied Mathematics, 1967,
[10] Painter,], SEMANTIC CORRECTNESS OF A COMPILER FOR AN
ALGOL-LIKE LANGUAGE. AIM-44, March, 1967. ‘

[11] Kaplan, D, SOME COMPLETENESS RESULTS IN THE MATHEMATICAL THEORY
OF COMPUTATION, AIM-45, October, 1966.

ceereeneeiooe in ACM JOURNAL, January 1968,

(12] Kaplm, D, CORRECTNESS OF A COMPILER FOR ALGOL- LIKE PROGRAMS '
AIM-48, July, 1967

[12] apla, D, A FORMAL THEORY CONCERNING THE EQUIVALENCE OF -
ALGORITHMS. AIM-59, May, 1963.

5

Final Report ' References

[14] Kaplan, D, THE FORMAL THEORET]C ANALYSIS OF STRONG EQUIVALENCE .
FOR ELEMENTAL PROGRAMS. AIM-60, june, 1968.

[15] Weiher, William, THE PDP-6 PROOF CHECKER. AIM-53, June, 1967.

[177 Manna, Zahar, and Preuli, Amir, FORMALIZATION A OF PRQPERTIES OF
RECURSIVELY DEFINED FUNCTIONS. AIM-82, March, 1969.

................ ,in ACM _]OURNAL Vol 17, No. 3. july, 1970

[18] [layes, Patrick], A MACHINE- OR]ENTED FORMULATION OF THE EXTENDED
' FUNCTIONAL CALCULUS. AIM.86, _]Lme 1969.

[19] Manna, Zobar, and McCarthy, John, PROPERTIES OF PROGRAMS AND PARTIAL
FUNCTION LOGIC. AIM-i00, October, 1969.

............... Jin Meltzer, B, and Michie, D. feds.), MACHINE INTELL[CENCE 5. Edinburgh:
Edinburgh University Press, 1970,

- [20] Manna, Zohar, THE CORRECTNESS OF NON-DETERMINISTIC PROGRAMS. AIM-
: a5, August, 1969,

-------------- .in ARTIFICIAL INTELLIGENCE _]QURNAL, Yol |, No. |, lQ'?D_.

[21] Ashcroft, Edward, and Manna, Zohar, FORMALIZATION QF . PROPERTIES OF
PARALLEL PROGRAMS. AIM-U0, February, 1970. '

.............. . in M;\CHINE INTELLIGENCE 6. Edinburgh: Edinbur‘ghUniversify Press 1971,

[(22] Manna, Zohar, SFC("JND ORDER MATHEMATICAL THEORY OF COMPUTATION -
AIM-11, March, 1970 .

reierinmees, in PROC. ACM SYMPOSIUM ON THEQRY OF COMPUTING. May, 1970,
[23] Igarashi, Shigeru, SEMANTICS OF ALGOL-LIKE STATEMENTS. AIM-129, June, 1970,

[24] Hoare, C.AR., "An Axiomatic Basis for Computer Programming , in Comm. AGM 12 No 10,
pp-H76-580, 1969, :

(25] Milner, Robin, AN ALGEBRAIC DEFINITION OF SIMULATION BETWEEN |
PROGRAMS. AIM.142, February, 197 .

-------------- , in PROC. 21JCAL British Computer Society, 1971.

[26] Aflen, John and Luckham, David, AN INTERACTIVE THEOREM-PROVING
PROGRAM. AIM-10%3, October, 1971 : , :

Final Report ‘ : " References -

[27] Milner, Robin, LOGIC FOR COMPUTABLE FUNCTIONS; DESCRIPTION OF ‘A
MACHINE IMPLEMENTATION. AIM-169, May 1972, '

- [283 Milner. Robin, IMPLEMENTATION AND APPLICATIONS OF SCOTT'S LOGIC FOR
COMPUTABLE FUNGCTIONS. Proc. Conf. on ‘Proving Assertions about
Programs. New Mexico State University, 1972, :

[297 Milner, Robin and Weyhrauch, Richard, PROVING COMPILER CORRECTNESS IN A
MECHANISED LOGIC, Machine Intelligence 7, Edinburgh University Press,
1972, [30] Weyhrauch, Richard and Milner, Robin, PROGRAM SEMANTICS
AND CORRECTNESS IN A MECHANIZED LOGIC, Proc. USA-Japan
Computer Conference, Tokyo, 1972, : ' .

(31} Floyd, Robert W, TOWARD INTERACTIVE DESIGN OF CORRECT PROGRAMS.
ATM-150, September 1971, '

I _in PROC. IFIP CONGRESS. 1971

[32] Manna, Zohar, Ness, Stephen, and Vuillemin, jean, INDUCTIVE METHODS FOR
PROVING PROPERTIES OF PROGRAMS. AIM.154, November, 1971. ‘

-------------- ,in ACM SIGPLAN NOTICES, Vol 7, No. 4. 1972,

[32] Ashcroft, Edward, and Manna, Zohar, THE TRANSLATION OF ‘GO-TQ' PROGRAMS
TO ‘WHILE PROGRAMS. AIM-138, January, 1971 ‘ ‘

e in PROC. IFIP CONGRESS. 1971

'

[24] Manna, Zohar, MATHEMATICAL THEORY OF PARTIAL CORRECTNESS. " AIM-139,
January, 1971, . : Lo

.............. _in J. COMP. AND $YS. SCI, June (97,

[oR]) London, Raiph L., CORRECTNESS OF TW(Q COMPILERS FOR A LISP SUBSET.
AITM 151, October, 1971 '

[26] Ashcroft, Edward, Manna, Zohar, and Pneuli, Amir,- DECIDABLE PROPERTIES OF .
MONADIC FUNCTIONAL SCHEMAS, AIM-148, July, 1971 ‘

[27) Chandra, Ashok, and Manna,i.‘Zohar,'PROGRAM SCHEMAS WITH EQUALITY. AIM-
158, December, 1971, ‘ _

Appendix A

PUBLICATIONS

Publishert Articles and books by members of the research staff who received at least partial
support from Lhe sub ject contract are listed below.

1. E. Ashcroft, Z. Manna, and A, Prucli, Dec1dable Properties of Monodu: Functmnal Schemas”,
J. ACM, July 1973,

_].' M. Cadiou and Z. Manna, "Recursive Definitions of Partial Functions and their'

5}
Computations”, AGM SIGPLAN Netices, Vol. 7, No. 1, January 1972,
- Shmuel Katz and Zohar Manna, "A Heuristic Approach to Program Verification®, Praceédings.

.'uo

of the Third Tnternational Joint Conference on Artificial Intelligence, Stanford University,
Augusr 1972, ' a .

4. 7. Manna (with R. Waldinger), "Toward Automatic Program Synthesis”, Comm. ACM,
March 1971 - , ‘

. Z. Manna, "Mathematical Themy of Partial Coxrectness J. Comp. & Sys Sc1 _]une 1971,

r_ﬂ'

6. 7. Manna, S. Ness, and J.- Vuillemin, "Inductive Methods for Proving Prcpert{es of
Programs”, ACM SIGPLAN Ntices, Vol. 7, No. 4, january 1972. I

7. Z. Manna and J. Vuillemin, "Fixpoint Approach to the Theory of Computation”, Cqmm. ACM,
July 1972, ‘ ' '

8. Zohar Manna, "Pragram Schemas”, in Currents in the Theory of Computmg (A. V. Aho Ed)
Prentice-Hall, anlewood Cliffs, N.], 1973,

4. Zohar Manna, Stephen Ness, Jean Vuillemin,. "Inductive Methods for‘Pi‘ovingf Properties of
Programs”, Comm. ACM, August 1972, ' : ‘

10. Zohar Manna, "Automatic Programming”, Proceedings of the Third Intematlonal jomt
Canference on Artificial Intelligence, Stanford University, August 1973 :

. Zohar Manns, INTRODUCTION TO MATHEMATICAL THEORY OF
COMPUTATION, McGraw- Hill, New York, I‘VH ' s B

12. R. f\[IlllF‘l "An Algebraic Definition of Stmulation between Programs Proc. 2I]JCAl, 'Br'it.
Cuomp. Soc;, Sep. 1971, .

13. R, Milmer, "Implementatiion and Application of Scott’s Legic for Computable Funcuons ACM'
SIGPLAN NOTICES, Vol. 7, No. |, January 1972, :

Final Report Appendix A - : PUBLICATIONS

4. Robin Milner and Richard Weyhrauch, "Proving Compiler Correctness in a Mechanized
Logic", Machine Tntelligence 7, Edinburgh’ University Press, 1972,

15 Richard Weyhrauch and Robin Milner, "Program Semantics and Corréetness in a Mechanized
logic", Proc. USA-Japan Computer Conference, Tokye, 1972, ' '

9

Appendix B

ARTIFICIAL INTELLIGENCE MEMOS -

Abstracts of research reports published by staff members who were supported by the sub}ect '
contract are listed here. '

ATM 125, Edward VAshcroft and Zohar Manna, THE TRANSLATION OF GO TO!
PROGRAMS TO ‘WHILE' PROGRAMS, January 1971, 28 pages.

In this paper we show that every flowchart program can be written without ‘go-ta’ stateménts by
using ‘while’ statements. The. main idea is to introduce new variables to preserve ‘the values of
certain variables at particular points in the program; or alternatively, to introduce specnal boolean _

variables to keep information about the cousse of the computation. :

The ‘while' programs produced yield the same final results as the original flowchart program but -
need not perform computations in exactly the same way. However, the new programs preserve the
‘topology’ of the original flowchart program, and ate of the same order of efficiency.

We also show that this cannot be done in general without addmg variables.

AIM-ISEP, Zohar Manna, MATHEMATICAL THEORY OF PARTIAL CORRECTNESS,
: January 1975, 24 pages.

‘In this work we show that it is possible to express most praperties regularly observed "irn
algorithms in terms of ‘partial correctness’ (ie., the property that the final results of the algorithm,
if any, satisfy some given inpui-output relation). :

This result is of <pec1al interest since 'partial correctness’ has already been formulated in predicate
calculns and i partial function logic for many classes of algorithms,

“AIM-142, Robin Milner, AN ALGEBRAIC DEFINITION OF SIMULATION BETWEEN
PROGRAMS, February 1971, 2I pages.

A smmlan‘cm relation between programs is defined which is quasi-ordering. Mutual simulation is
then an equivalence relation, and by dividing out by it we abstract from a program such details
as how rthe sequencing is controlled and how data is represented. The equivalence classes are
amnommanrm: to the algorithms which are realized, or expressed, by their member programs.

A technique is given and illustrated for proving simulation and equwalence of programs; there is
an analogy with Floyd's technique for proving correctness of programs. Finally, necessary and
sutficient concitions far simulation are given.

Final Report Appendix B ARTIFICIAL INTELLIGENCE MEMOS

AIM-148, Edward Ashcroft, Zohar Manna, and Amir Preuli, DECIDABLE PROPERTIES OF.'-.
MONADIC FUNCTIONAL SCHEMAS, July 1971, 10 pages. R :

We define a class of (monadic) functional schemas which properly include ‘Tanov’ flowehart
schemns, We show that the termination, divergence and freedom problems for functional schemas
are decicdlable. Althaugh it is possible to translate a large class of non-free functional schemas into

~equivatent free functional schemas, we show-that this cannot be done i general. We show also

that the equivalence problem for free functional schemas is decidable. Most of the results are .
obtained from well-known results in Formal Languages and Automata Theory.

AIM-1%4, Zaohar Manna, Stephen Ness and jean Vuillemin, INDUCTIVE METHODS FOR -
PROVING PROPERTIES OF PROGRAMS, November 1971, 24 pages. :

We have two main purpnses in this paper. First, we dlanfy and extend known results about
computation of recursive programs, emphasizing the difference between the theoretical and
practical approaches. Secondly, we present and examine various known methods for proving
properties of recursive programs. We discuss in detail two powerful inductive methods,
computational duction and structural induction, illustrating theit apptlications ‘by. various
examples. We also briefly discuss some other related methods, o

Clur aim in this work is to introduce inductive methods to as wide a class of readers as possib]é
and to demonstrate their power as practical techniques. We ask the forgiveness of our more
thearotical-minded colleagues for our occasional choice of clarity over precision. '

AIM-158, Ashok Chandra, Zohar Manna, PROGRAM SCHEMAS WITH EQ;UAi;ITY,'
o Diecembior 197, 12 pages. ' : : L :

We discuss the class of program schemas augmented with equality tests, that is, tests of equality
belweeh terms.

In the first part of the paper we illustrate the "power” of equality tests. 1t turns out that the class
of program schernas with equality is more powerful than the "maximal” ‘classes of schemas
suggested by other investigators. C

In the second part of the paper, we discuss the decision problems of program schemas with
equality. 1t 15 shown, for example, that while the decision problems normally considered for
sehemas (such as haling, divergence, equivalence, isomorphism and freedom) are decidable for
lanov schemas. They all become undlecidable if general equality tests are added. - We suggest,
however, limited equality tests which can be added to certain subclasses of program schemas-while
preserving their solvable properttes. S :

AIM-16%, JM. Cadiou, RECURSIVE DEFINITIONS OF PARTIAL FUNCTIONS AND
THEIR COMPUTATIONS, April 1972, 160 pages. | .

A formal syptactic and semantic model is presented for ‘recursive definitions’ which are
genernlizations of those found LISP, for example. Such recursive definitions can have.two
classcs of Tixpoints, the strong fixpoints and the weak {ixpoints, and also possess a class of
computed partial functions.

Final Report Appendix B ARTIFICIAL INTELLIGENCE MEMOS

Relations between these classes are presented: fixpoints are shown to be extensions of COmputed
functions. More precisely, strong’ f:xpomts are shown to be extensions of cemputed functions -
when (he computations may involve "call by name” substitutions; weak fixpoints are shown to be
extensions of computed functions when the computation only involve "call by value” substitutions.
The Church-Rosser -property for recursive definitions with flxpomts also” follows frorm these ;

results,

Then conditions are given on the recursive definitions to ensure that they possess least flxpomts ‘
(of both classes), and computation rules are given for cumputmg these two fixpoints: the "full” -
computaiion rule, which leads to the least weak fixpoint. A generat class of computatmn rules,
called ‘safe mnermost’, also lead to the latter fixpoint. The "leftmost innermost” rule. is a special
case of those, for the L1SP recursive definitions. ‘

AIM-164, Zohar Manna and Jean Vuillemin, FIXPOINT APPROACH TO THE THEORY OF _'
COMPUTATION, April 1972, 29 pages. .

Following the fixpoint theory of Scoti, we propose to define the semantics of computer programs
in terms of the least fixpoints of recursive programs. This allows one not only to. justify all '
existing verification techniques, but also to extend them to handle various properties: of computer'
programs, including correctness, rermination and quvalence in a uniform manner.

AIM-169, Robin Mllnez LOGIC FOR COMPUTABLE FUNCTIONS DESCRIPTION OF A

MACHINE IMT"l EMENTATION. May 1972, 36 pages.

This paper is primarily a user's manual for LCF, a proof-checking program for a logu‘. of
computable functions proposed by Dana Scott in 1969, but unpublished by him. We use the name
LLCF also for the logic itself, which s presented at the start of the paper. The proof-checking
program is designed to allow the user interactively to generate formal proofs about computable
functions and functionals over a variety of domains, including.those of. interest to the computer
scientist--for example, integers, lists and computer programs and their semantics. The user’s task is
alleviated by two features: a subgoaling facility and a powerful simplification - mechanism.

Apyilications inclnde proofs of program correctness and in particular of compiler correctness; these -
applications are not discussed herein, but are illustrated in the papers referenced in the
introduction,

AIM 154, Malenim "Newey, AX]IOMS AND THEOREMS FOR INTEGERS LISTS AND
FINITE SETS IN LCF, January K973, 52 pages.

LCF (Logic for Computable Functions) is being promoted as a formal. language suitable for the -
discussion of various problems in the Mathematical Theory of Computation (MTC). To this end,
several examples of MTC problems have been formalised and proofs have been exhibited usmg
the LCT proci-checker. However, in these examples, there has been a certain amount of ad-hoc-
ery in the proofs; namely many mathematical theorems have been assumed without proof and ho
axiomatisarinn of the mathematical dorains involved was given. This paper describes a suitable
mathematical environment for future LCF experiments and its axiomatic basis. The environment
developed deemed appropriate {or such experiments, consists of a Iarge body of theorems from the
areas of inteper arithmeric, list manipulation and finite set theory. :

C12

Final Report Appendix B ARTIFICIAL INTELLIGENCE MEMOS

AIMASH, Ashob 1K Chandra and Zohar Manna, ON THE POWER OF PROGRAMMING
FEATURES, January 1973, 29 pages. . -

Wo consider the power of several programming features such as counters, pushdown stacks,
quUeUCE, ATEAYS, Tecursion and equality. In this study program schemas are used as the madel for
computation. The relations between the powers of these features is completely described by a
cornpirison diagram. ' ' '

AIM-IS0. Rotnn Milner, MODELS OF LCF, January 1973, 17 pages.

LCF 15 o deductve system for computable functions proposed by D. Scott in 1969 in an
unpublished meraorandum. The purpose of the present paper is to demonstrate the soundness of
the systesn wirh respect ro certain. models, which ate partially ordered domains of continuous
functions, This demonstration was supplied by Scott in his memorandum; the present paper is
merely intended o make this work more accessible,

AIM-C10. Zobar Marna and Amir Poueli, AXIOMATIC APPRCACH TO TOTAL.
CORPECTNESS OF PROGRAMS, July 1973, 25 pp.

We present here an axiomatic approach which enables one o prove by formal methods that his
programm is Ttotally correct” (i, it terminates and is logically correct -- does what it is supposed to
doy The appreach is similar to Hoare's approach for proving that a program is "partiaily
correct” {Le. that whenever it terminates it produces correct results), -Our extension to Hoare's
meihod les in Lhe possibility of proving correctness and termination at once, and in the enlarged
scope of propertizs that can be proved by it. : '

